A

BERKELEY LAB

Lawrence Berkeley National Laboratory

rrerrnrnr

%%, U.S. DEPARTMENT OF

'ENERGY

UNIVERSITY OF
CALIFORNIA

~

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

ENERGY

& E’:T n"(‘r@.
F
%)

1

C++17 Parallel Algorithms
and Beyond

Bryce Adelstein Lelbach

Computer Architecture Group, Computing Research Division

CppCon 2016

? STE||JAR GROUP

~

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

ENERGY

& E’:T n"(‘r@.
F
%)

1

C++17 Parallel Algorithms
and Beyond

Bryce Adelstein Lelbach

Computer Architecture Group, Computing Research Division

CppCon 2016

? STE||JAR GROUP

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

OpenGL
OpenCL
CUDA
Direct Compute
C++ AMP
DirectX Intrinsics
Auto-vectorization

OpenCL Straight C++

750 1500 2250

GPU Vectorization M Multi-thread Scalar

© 2012 Adobe Systems Incorporated. All Rights Reserved. 18

-~

@ STE||AR GROUP 4 e

BERKELEY LAB
Copyright (C) 2016 Bryce Adelstein Lelbach

Hardware is increasingly parallel and increasingly
diverse. Vendor-neutral parallel programming
abstractions are desperately needed to avoid leaving
performance on the table.

C++11/14 provide low-level concurrency primitives, but
no real higher-level generic abstractions for parallel
programming.

- >, A
i
@ STE||AR GROUP 5 revers?]
BERKELEY LAB
Copyright (C) 2016 Bryce Adelstein Lelbach

Q: What are standard algorithms?

@ STE||AR GROUP

The standard says the algorithms library

describes components that C++
programs may use to perform
algorithmic operations on containers
and other sequences

(25.1 [algorithms.general] pl)

@ STE||AR GROUP

Q: What are standard algorithms?
A: Generic operations on sequences.

@ STE||AR GROUP

Q: What are standard algorithms?
A: Generic operations on sequences.

(except min(), max(), etc)

@ STE||AR GROUP

Three types of standard algorithms:
- Non-modifying sequence operations.

- Mutating sequence operations.

- Sorting and related operations.

@ STE||AR GROUP

The Committee Draft of C++17 includes a
new standard parallel algorithms library
which provides parallelized versions of
these sequence operations.

@ STE||AR GROUP

Q: What does parallel mean?

@ STE||AR GROUP

@ STE||AR GROUP

Bit-Level Parallelism implicit
Instruction-Level Parallelism
Vector-Level Parallelism
Task-Level Parallelism
Process-Level Parallelism explicit

@ STE||AR GROUP

Bit-Level Parallelism implicit
Instruction-Level Parallelism
Vector-Level Parallelism
Task-Level Parallelism
Process-Level Parallelism explicit

@ STE||AR GROUP

Bit-Level Parallelism implicit
Instruction-Level Parallelism
Vector-Level Parallelism
Task-Level Parallelism
Process-Level Parallelism explicit

Parallel algorithms library components:
« ExecutionPolicy concept.

- Three standard execution policies.

- New ExecutionPolicy overloads for most
existing standard algorithms.

- New “unordered” algorithms based on
existing “ordered” algorithms.

- Fused algorithms.

@ STE||AR GROUP

An ExecutionPolicy describes how a
generic algorithm may be parallelized.

They allow programmers to request
parallelism and describe constraints.

@ STE||AR GROUP

Standard execution policies:

- std: :seq — operations are indeterminately
sequenced in the calling thread.

- std: :par — operations are indeterminately
sequenced with respect to each other within
the same thread.

- std: :par_unseq — operations are
unsequenced with respect to each other
and possibly interleaved.

@ STE||AR GROUP

Suppose we are using the following binary
operation with std: :transform():

double multiply(double x, double y)
{ return x * y; }

std: :transform(
// "Left" input sequence.
x.begin(), x.end(),
y.begin(), // "Right" input sequence.
x.begin(), // Output sequence.
multiply);

@ STE||AR GROUP

Suppose we are using the following binary
operation with std: :transform():

load x[1i] to a scalar register
load y[i] to a scalar register
multiply x[i] and y[i]

store the result to x[i]

@ STE||AR GROUP

std: :par

load x[1] to a scalar register
load y[i] to a scalar register
multiply x[i] and y[i]
store the result to x[I]
load x[i+1] to a scalar register
load y[i+1] to a scalar register
multiply x[i+1] and y[i+1]
store the result to x[i+1]
load x[i+2] to a scalar register
load y[i+2] to a scalar register
multiply x[i+2] and y[i+2]
store the result to x[i+2]
load x[i+3] to a scalar register
load y[i+3] to a scalar register
multiply x[i+3] and y[i+3]
store the result to x[i+3]

@ STE||AR GROUP

21
Copyright (C) 2016 Bryce Adelstein Lelbach

BERKELEY LAB

std: :par

std: :par_unseg

load x[i] to a scalar
load y[i] to a scalar
multiply x[i] and y[i
store the result to x[I
load x[i+1] to a scalar

load y[i+1] to a scalar

register
register
]
]

register
register

multiply x[i+1] and y[i+1]
store the result to x[i+1]

load x[i+2] to a scalar register
load y[i+2] to a scalar register
multiply x[i+2] and y[i+2]
store the result to x[i+2]
load x[i+3] to a scalar register
load y[i+3] to a scalar register
multiply x[i+3] and y[i+3]
store the result to x[i+3]

@ STE||AR GROUP

22

load x[1] to a scalar register
load x[i+1] to a scalar register
load x[i+2] to a scalar register
load x[i+3] to a scalar register
load y[i] to a scalar register
load y[i+1l] to a scalar register
load y[i+2] to a scalar register
load y[i+3] to a scalar register
multiply x[i] and y[i]
multiply x[i+1] and y[i+1]
multiply x[i+2] and y[i+2]
multiply x[i+3] and y[i+3]
store the result to x[i]
store the result to x[i+1]
store the result to x[i+2]
store the result to x[i+3]

Copyright (C) 2016 Bryce Adelstein Lelbach

BERKELEY LAB

std: :par std: :par_unseg

load x[1i] to a scalar register load x[1:i+3] to a vector register
load y[i] to a scalar register load y[i:i+3] to a vector register
multiply x[i] and y[i] multiply x[1i:i+3] and y[i:i+3]
store the result to x[I] store the results to x[i:i+3]

load x[i+1] to a scalar register
load y[i+1] to a scalar register
multiply x[i+1] and y[i+1]
store the result to x[i+1]
load x[i+2] to a scalar register
load y[i+2] to a scalar register
multiply x[i+2] and y[i+2]
store the result to x[i+2]
load x[i+3] to a scalar register
load y[i+3] to a scalar register
multiply x[i+3] and y[i+3]
store the result to x[i+3]

@ STE||AR GROUP i} il

BERKELEY LAB
Copyright (C) 2016 Bryce Adelstein Lelbach

New ExecutionPolicy overloads for most existing standard algorithms.

adjacent_difference
adjacent_find

all of

any_of

copy[_if]|_n]
count[_if]

equal

fill[_n]

find[_end| _first_of|_if|_if not]
for_each
generate[_n]
includes
inplace_merge
is_heap[_until]

is_partitioned

@ STE||AR GROUP

is sorted[_until]
lexicographical_compare
max_element

merge

min_element

minmax_element

mismatch

move

none_of

nth_element
partial_sort[_copy]
partition[_copy]
remove[_copy|_copy_ if|_if]
Replace[_copy|_copy_if|_if]

Reverse[copy]

Rotate[_copy]
Search[_n]
set_difference
set_intersection
set_symmetric_difference
set_union

sort

stable_partition
stable_sort
swap_ranges

transform
uninitialized_copy[_n]
uninitialized fill[n]
unique

unique_copy

ru:}l

-~

:

BERKELEY LAB

std::vector<T> X

//

std::sort(std::par, x.begin(), x.end());

@ STE[]AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<T>» x = // ...

std::for_each(std::par _unseq,
x.begin(), x.end(), process);

© STE||AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<T> x = // ...
#pragma omp parallel for simd

for (std::size t i = 03 i < x.size(); ++1i)
process(x[1i]);

@ STE||AR GROUP i —

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

New “unordered” algorithms based
on existing “ordered” algorithms.

 StC

:reduce()

- std::inclusive scan()

- std::exclusive scan()

- std: :transform _reduce()

@ STE||AR GROUP

std::reduce() - unordered std: :accumulate()

T v = std::reduce([ep,]
first, last,

[init,] [op])

@ STE||AR GROUP

std::accumulate():

first, acc = init

then for every it in [first, last) in order
acc = binary op(acc, *it)

std: :reduce():
GSUM(binary op, init, *first, ...)

@ STE[]AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

Commutativity: Changing the order of operations does
not change the result.

- Integer Addition: X +Yy ==Y + X
- Integer Multiplication: xy == yX
- Integer Subtraction: x -y =y - x

Associativity: The grouping of operations does not
change the result.

- Integer Addition: (X +y) +z ==X+ (y + 2)
- Integer Multiplication: (xy)z == X(yz)
- Integer Subtraction: (x - y) - z == x - (y - 2)

@ STE||AR GROUP

Copyright (C) 2016 Bryce Adelstein Lelbach

~
. A
rrrrrrr "“|

BERKELEY LAB

GNSUM(op, a?, .., aV) =
al N ==
op(GNSUM(op, at, .., a%), otherwise
GNSUM(op, akt, .., aV))

@ STE||AR GROUP

GSUM(op, at, .., aV) == GNSUM(op, b?t, .., bN)

where b1, .., bN may be any permutation of b, .., bN

@ STE||AR GROUP i} il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{ , , s s }s

// sum ~= 111.111
double sum = std::accumulate(x.begin(), x.end(),)

@ STE||AR GROUP) =

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{ , , s s }s

// sum ~= 111.111

double sum = R
sum = sum + XxX[9];
sum = sum + x[1];
sum = sum + x[2];
sum = sum + Xx[3];
sum = sum + x[4];
@ STE||AR GROUP } ’\I ;

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{ , , s s }s

// sum ~= 111.111
double sum = std::reduce(x.begin(), x.end(),)

@ STE||AR GROUP } il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{ , , s s }s

// sum ~= 111.111

double sum = R
sum = sum + XxX[9];
sum = sum + x[1];
sum = sum + x[2];
sum = sum + Xx[3];
sum = sum + x[4];
@ STE||AR GROUP i ’\I ;

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{ , , s s }s

// sum ~= 111.111

double sum = R
sum = sum + x[1];
sum = sum + x[0];
sum = sum + x[2];
sum = sum + x[4];
sum = sum + x[3];
@ STE||AR GROUP ’\I ;

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{le-2, le-1, 1e0, lel, 1le2};

// GNSUM(plus, x[2], x[3], x[4])

double sum@ = x[2] + x[3] + x[4]; ’—:i{i-
// GNSUM(plus, 0.0, x[0], x[1]) sume suml
double suml = 0.0 + x[9] + x[1];

// GNSUM(plus, 0.0, x[0], ..., x[4])

// = plus(GNSUM(plus, x[2], x[3], x[4]),
// GNSUM(plus, 0.0, x[0], x[1]))
double sum = sum@ + suml;

@ STE||AR GROUP } il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x{le-2, le-1, 1e0, lel, 1le2};

N

// GNSUM(plus, x[0], x[4], x[2])
double sum@ = x[0] + x[4] + x[2];

N

sum

—

// GNSUM(plus, 0.0, x[3], x[1]) su

mo

suml

double suml = 0.0 + x[3] + x[1];

// GNSUM(plus, 0.0, x[0], ..., x[4])

// = plus(GNSUM(plus, x[@], x[4], x[2]),
// GNSUM(plus, 0.0, x[3], x[1]))
double sum = sum@ + suml;

@ STE||AR GROUP

40
Copyright (C) 2016 Bryce Adelstein Lelbach

-~
/—\l ‘"}I
rrrrrrr

BERKELEY LAB

std::inclusive_scan() - unordered std: :partial sum().

OutputIt it =
std::inclusive_scan([ep,]
first, last, output,

[op,] [init]);

@ STE||AR GROUP

std::inclusive_scan() - unordered std: :partial sum().

OutputIt it =
std::inclusive_scan([ep,]
first, last, output,
[op,] [init]);

BERKELEY LAB

© STE||AR GROUP il

*(output)
*(output+l)
*(output+2)
//

*first;
¥*first + *(first+1);
¥*first + *(first+l) + *(first+2);

@ STE||AR GROUP

std::exclusive_scan() - exclusive prefix sum.

OutputIt it =
std::exclusive _scan([ep,]
first, last, output,
[op,] [init]);

@ STE||AR GROUP) il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

*(output) init;
*(output+1) = init + *first;
*(output+2) = init + *first + *(first+1);

//

@ STE[]AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

Fused algorithms:
- transform reduce()
- transform inclusive scan()

- transform _exclusive scan()

@ STE||AR GROUP

~

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

ENERGY

& E’:T n"(‘r@.
F
%)

1

C++17 Parallel Algorithms
and Beyond

Bryce Adelstein Lelbach

Computer Architecture Group, Computing Research Division

CppCon 2016

? STE||JAR GROUP

~

. Ifh &5 U.S. DEPARTMENT OF
f(rereee b o
¥/ ENERGY
e

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

C++17 ParaHel-Agorthms
aha-Beyond

Bryce Adelstein Lelbach

Computer Architecture Group, Computing Research Division

CppCon 2016

? STE||JAR GROUP

-~
Ml

=™ BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

e Group, Computing Research Division

“ on 2016

(D STE||AR GROUP

std: :transform_reduce() - unordered std: :transform_reduce().

R v =
std::transform reduce([ep,]
first, last,
trans_op, init, reduce_op);

© STE||AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

R trans op(T const&);
R reduce op(R const&, R const&);

R v = reduce op(trans op(x[i]), trans op(x[i+1]));

@ STE||JAR GROUP

R v = reduce_op(

reduce op(trans_op(x[i]

), trans op(x[i+l1])),

reduce op(trans op(x[i+2]), trans op(x[i+3])));

reduce op

r/\;

reduce _op

—

trans_op

x[1]

@ STE||AR GROUP

reduce_op

trans_op trans_op
x[i+2] x[1i+2]

52
Copyright (C) 2016 Bryce Adelstein Lelbach

—

trans_op
x[1i+2]

> A
/\l ‘I}I
rrrrrrr

BERKELEY LAB

std: :transform_reduce() - unordered std: :transform_reduce().

R v =
std::transform reduce([ep,]
firstl, lastl, first2,
trans_op, init, reduce_op);

© STE||AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std: :vector<double» x = //

double norm =

std::sgrt((x[2] * x[0]) + (x[1] * x[1]) + /* ... */);

@ STE||AR GROUP) =

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x = // ...

double norm =
std::sqrt(
std: :transform_reduce(
std::par_unseq,

// Input sequence.
x.begin(), x.end(),

// Unary transform op.
[1 (double x) { return x * x; },

// Initial reduction value.
double(9.0),

// Reduction op.
[] (double x1, double xr) { return x1 + xr; }

)
)s

@ STE||AR GROUP) il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x = // ...
double norm =
std::sqrt(
std: :transform_reduce(
std::par_unseq,

// Input sequence.
x.begin(), x.end(),

// Unary transform op.
[] (double x) { return x * x; },

/] ...

@ STE||AR GROUP) —

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::vector<double> x = // ...

double norm =
std::sqrt(
std: :transform_reduce(
std::par_unseq,

// Input sequence.
x.begin(), x.end(),

// Unary transform op.
[1 (double x) { return x * x; },

// Initial reduction value.
double(9.0),

// Reduction op.
[] (double x1, double xr) { return x1 + xr; }

)
)s

@ STE||AR GROUP } il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

/] ...
/] ...

std: :vector<double> X
std::vector<double> y

double dot_product =

(x[e] * y[e]) + (x[1] * y[1]) + // ...

@ STE||AR GROUP

59
Copyright (C) 2016 Bryce Adelstein Lelbach

> A
/\l ‘I}I
rrrrrrr

BERKELEY LAB

/] ...
/] ...

std: :vector<double> X
std::vector<double> y

double dot _product = std::transform_reduce(
std::par_unseq,

// "Left" input sequence.
Xx.begin(), x.end(),

// "Right" input sequence.
y.begin(),

/] ...

@ STE||AR GROUP) —

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std: :vector<double> X
std::vector<double> y

/] ...
/] ...

double dot _product = std::transform_reduce(
std::par_unseq,

// "Left" input sequence.
Xx.begin(), x.end(),

// "Right" input sequence.
y.begin(),

// Binary transform op.
[] (double x, double y) { return x * y; },

/] ...

@ STE|IAR GROUP : —

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

/] ...
/] ...

std: :vector<double> X
std::vector<double> y

double dot _product = std::transform_reduce(
std::par_unseq,

// "Left" input sequence.
Xx.begin(), x.end(),

// "Right" input sequence.
y.begin(),

// Binary transform op.
[] (double x, double y) { return x * y; },

// Initial value for reduction.
double(©.0),

// Reduction op.
[1] (double x, double y) { return x + y; }

)
@ STE||AR GROUP) revers?]

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

/] ...
/] ...

std: :vector<double> X
std::vector<double> y

double dot _product = std::transform_reduce(
std::par_unseq,

// Input sequence.
boost::counting iterator<std::size t>(9),
boost::counting iterator<std::size t>(x.size()),

// Unary transform op.
[&x, &y] (std::size t i) { return x[i] * y[i]l; },

// Initial value for reduction.
double(9.0),

// Reduction op.
[] (double x, double y) { return x + y; }

)s

@ STE||AR GROUP) —

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::size t word count(std::string view s) {
// Goal: Count the number of word "beginnings" in the
// input sequence.

//

@ STE||AR GROUP) il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

bool is_word beginning(char left, char right) {
// If left is a space and right is not, we've hit a
// new word.
return std::isspace(left) && !std::isspace(right);
}

@ STE||AR GROUP i il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::size t word count(std::string view s) {
if (s.empty()) return 0;

//

@ STE[]AR GROUP) il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::size t word count(std::string view s) {
if (s.empty()) return 0;

// If the first character is not a space, then it's the
// beginning of a word.
std::size t wc = (!std::isspace(s.front()) ? : 0);

//

@ STE||AR GROUP i il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::size t word count(std::string view s) {

/] ...

// Count the number of characters that start a new word
WC +=
std: :transform_reduce(
std::par_unseq,

// "Left" input: s[@], s[1], ..., s[s.size() - 2]
s.begin(), s.end() - 1,

// "Right" input: s[1], s[2], ..., s[s.size() - 1]
s.begin() + 1,

// Binary transform op: Return 1 when we hit a new word.
is _word beginning,

/] ...

@ STE||AR GROUP i il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::size t word count(std::string view s) {

/] ...

// Count the number of characters that start a new word
WC +=
std: :transform_reduce(
std::par_unseq,

// "Left" input: s[@], s[1], ..., s[s.size() - 2]
s.begin(), s.end() - 1,

// "Right" input: s[1], s[2], ..., s[s.size() - 1]
s.begin() + 1,

// Binary transform op: Return 1 when we hit a new word.
is _word beginning,

/] ...

@ STE||AR GROUP) il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

std::size t word count(std::string view s) {

/] ...

// Count the number of characters that start a new word
WC +=
std: :transform_reduce(
std::par_unseq,

// "Left" input: s[@], s[1], ..., s[s.size() - 2]
s.begin(), s.end() - 1,

// "Right" input: s[1], s[2], ..., s[s.size() - 1]
s.begin() + 1,

// Binary transform op: Return 1 when we hit a new word.
is _word beginning,

std::size t(9), // Initial value for reduction.
std::plus<std::size t>() // Reduction op.

)s

/] ...
@ STE||AR GROUP } il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

input sequence:
"Whose woods these are I think I know.\n"
"His house is in the village though; \n"
"He will not see me stopping here \n"
"To watch his woods fill up with snow.\n"

First Stanza of Stopping by Woods on a Snowy Evening, Robert Frost

post-transform pseudo-sequence:
0000010000010000010001010000010100000
10001000001001001000100000001000000000
10010000100010001001000000001000000000
10010000010001000001000010010000100000

@ STE||AR GROUP

input sequence:
"Whose woods these are I think I know.\n"
"His house is in the village though; \n"
"He will not see me stopping here \n"
"To watch his woods fill up with snow.\n"

First Stanza of Stopping by Woods on a Snowy Evening, Robert Frost

post-transform pseudo-sequence:
1 + 1 + 1+ 1+41 + 1+1 +
1+1 + 1+1 +1 + 1 -+ 1 +
1+41 +1+1+1+1 + 1 +
1+1 + 1 +1 + 1 +1+1 + 1

@ STE||AR GROUP

bool is_word beginning(char left, char right) {
return std::isspace(left) && !std::isspace(right);
}

std::size t word count(std::string view s) {
if (s.empty()) return 0;

std::size_ t wc = (!std::isspace(s.front()) ? : 0);

WC +=

std: :transform_reduce(
std::par_unseq,
s.begin(), s.end() - 1,
s.begin() + 1,
is word beginning,
std::size t(9),
std::plus<std::size t>()

)

return wc;

}
© STE||AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

bool is_word beginning(char left, char right) {
return std::isspace(left) && !std::isspace(right);
}

std::size t word count(std::string view s) {
if (s.empty()) return 0;

std::size t wc =

std: :transform_reduce(
std::par_unseq,
s.begin(), s.end() - 1,
s.begin() + 1,
is _word beginning,
std::size t(!std::isspace(s.front()) ? : 0),
std::plus<std::size t>()

)

return wc;

}

© STE||AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

Sparse histogram:

- Goal: Find all the unique values in a
seguence and count the number of times

they occur.

- Example:

~Input: a, b, ¢, ¢, a, a, b, b, b, b, e
-Output keys: [a, b, c, e]

—~Output counts: [2, 5, 3, 1]

@ STE||AR GROUP

auto sparse_histogram(std::vector<T> const& x) {
std::vector<T> hist keys;
std::vector<std::size t> hist counts;

//

-~

@ STE||AR GROUP :)

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {
std::vector<T> hist keys;
std::vector<std::size t> hist counts;

if (x.empty())
return std::make_tuple(std::move(hist keys),
std::move(hist counts));

//

@ STE||AR GROUP il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {
std::vector<T> hist keys;
std::vector<std::size t> hist counts;

if (x.empty())
return std::make_tuple(std::move(hist keys),
std::move(hist counts));

// Sort x to bring equal elements together.
std::sort(std::par_unseq, x.begin(), x.end());

//

> A
/\l II}I
rrrrrrr

@ STE||AR GROUP .

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {

//

// Count the number of unique elements.
std::size_t num_unique_elements = //

//

@ STE||AR GROUP . il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {

/] ...

// Count the number of unique elements.
std::size t num_unique_elements = std::transform_reduce(
std: :par_unseq,

x.begin(), x.end() - 1, // x[@], x[1], ..., x[x.size() - 2]
X.begin() + 1, // x[1], x[2], ..., x[x.size() - 1]

// Transform op: Return 1 if right is a new unique element.
[] (auto&& left, auto&& right)

// If the right is not equal to the left, then we've

// hit the next unique element.

{ return left != right; },

std::size t(1), // x isn’t empty, so 1 unique key minimum.
std::plus<std::size t>() // Reduction operation.

)s

/] ...
@ STE,, AR GROUP i il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {

//

// Allocate storage.
hist_keys.resize (num_unique_elements);
hist_counts.resize(num_unique_elements);

//

-~

@ STE||AR GROUP revers?]

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {

/] ...

// Count the number of occurrences of each unique key.
hpx::reduce_by key(
hpx::par_unseq,

// Input key sequence.

x.begin(), x.end(),

// Input value sequence.

boost::constant _iterator<std::size t>(1),

// Output key sequence.
hist keys.begin(),

// Output value sequence.
hist counts.begin()

)s
/] ...

@ STE||AR GROUP i il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {

/] ...

// Count the number of occurrences of each unique key.
hpx::reduce_by key(
hpx::par_unseq,

// Input key sequence.

x.begin(), x.end(),

// Input value sequence.

boost::constant _iterator<std::size t>(1),

// Output key sequence.
hist keys.begin(),

// Output value sequence.
hist counts.begin()

)s
/] ...

@ STE||AR GROUP) il

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

auto sparse_histogram(std::vector<T> const& x) {

/] ...

hpx::reduce_by key(
hpx: :par_unseq,

// Input key sequence.

x.begin(), x.end(),

// Input value sequence.

boost::constant _iterator<std::size t>(1),

// Output key sequence.
hist keys.begin(),

// Output value sequence.
hist counts.begin()

)s

return std::make_tuple(std::move(hist keys),
std: :move(hist counts));

@ STE||AR GROUP ’\I ;

BERKELEY LAB

Copyright (C) 2016 Bryce Adelstein Lelbach

Parallel algorithms exception handling

 If an element access function exits via an
uncaught exception, std: :terminate() is
called.

@ STE||AR GROUP

Parallel algorithms exception handling

. |If an element access function exits via an
uncaught exception, std: :terminate() Is

called.

- Parallel algorithms may also throw
std::bad _alloc if temporary memory
resources are needed for execution and
none are available.

@ STE||AR GROUP

Acknowledgments

HPX: github.com/STEIAR-GROUP/hpx
Thrust: github.com/thrust/thrust

Boost.Compute: github.com/boostorg/compute

Jared Hoberock
Michael Garland
Grant Mercer

Hartmut Kaiser

@ STE||AR GROUP

